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ABSTRACT

We port OpenEMS and an Apache StreamPipes extension ser-
vice to RISC-V, validating the applications and system soft-
ware stacks (Java, Linux, hypervisor, and Zephyr) beneath.
We describe our hands-on experience in running these differ-
ent payloads.

1. INTRODUCTION

The RISC-V ecosystem comprises both hardware and soft-
ware. Having a rich software system, consisting of both sys-
tem software (hypervisor, OS, virtual machines) as well as
demonstrated applications is beneficial. In particular, RISC-V
is relevant for safe and secure hypervisors and operating sys-
tems, as the RISC-V platform allows for both custom and open
designs (e.g., analyzable for side channels). In the ISOLDE
project [17], we validate the viability of RISC-V for energy
management and smart home, using OpenEMS and Apache
StreamPipes as applications, and also validating ports of a hy-
pervisor and an embedded Linux, aligned with a general ap-
proach in the TRISTAN [28] and ISOLDE projects to have
demonstrators in several industrial application domains [7].

We iterated incrementally, starting with the RISC-V QEMU
emulator (Section 3). Then we used this environment to test
an OpenEMS port for RISC-V (Section 4), validating the us-
ability of the adaptation. Next, we replaced the QEMU emu-
lator by the RISC-V CVAG6 core running on a Genesys2 board
(Section 5), using the FPGA platform to test and validate the
latest version of the CVA6 core. One of the main targets of
the TRISTAN/ISOLDE ecosystem. Then we replace QEMU
with a hypervisor (Section 7), validating the hypervisor’s func-
tionality. Section 8 features an Apache StreamPipes extension
service on a Banana Pi device, demonstrating the HW/SW
stack on a commercial off-the-shelf embedded platform. We
describe our hands-on experience in running these payloads.
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of the Creative Commons Attribution 4.0 License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original au-
thor and source are credited.

2. RELATED OPEN-SOURCE WORK IN ENERGY

Open-source Energy Management Systems (EMS) are increas-
ingly relying on commodity and industrial single-board com-
puters (SBCs) and open CPU architectures to realize cost-
effective deployments in smart homes and microgrids. Be-
low, we review relevant hardware platforms (boards and chips)
used as EMS edge controllers and gateways.

OpenEMS, Apache StreamPipes, and typical edge hard-
ware. OpenEMS is a modular, open-source EMS running
on-site (edge) to interface with devices (e.g., PV inverters, bat-
teries) via industrial protocols [13, 12]. Apache StreamPipes
is a distributed Industrial IoT analytics framework for ingest-
ing and analyzing streaming data from industrial devices. In
practice, both OpenEMS Edge and Apache StreamPipes (with
its edge extension service) are commonly deployed on SBCs:

i. Raspberry Pi for prototyping and small commercial pilots
owing to cost and sufficient I/O to reach smart meters and
inverters [8, 13]. Version 5 has a Broadcom BCM2712
quad-core  ARM Cortex-A76 @ 24GHz and
LPDDR4X-4267 RAM (options for 1/2/4/8/16 GB) [24].

ii. Banana Pi class devices are used as low-cost Linux SBCs
with improved I/O; within ISOLDE, Banana Pi hosts data
services (e.g., Apache StreamPipes) as part of the EMS
data pipeline. The BPI-F3 has a SpacemiT K1 octa-core
RISC-V CPU @ up to 1.6 GHz with 2.0 TOPS NPU and
LPDDR4 RAM (options for 2/4/8/16 GB) [4].

Industrial-grade alternatives to Raspberry Pi. For EMS
gateways with industrial requirements (long-term availability,
temperature ranges, I/O) several platforms go beyond hobbyist
SBCs:

i. Pi.MX8 (open-hardware CM4-compatible SoM) brings
NXP i.MX 8M Plus (quad Cortex-A53 up to 1.8 GHz
plus Cortex-M7 @ 800 MHz and 2.3 TOPS NPU, typi-
cally configured with 1-4 GB LPDDR4) into the Rasp-
berry Pi CM4 form factor, enabling reuse of established
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carrier boards while offering industrial longevity and on-
device Al for forecasting/optimization [14, 21].

ii. Intel NUC (with Enapter Gateway) provides an industrial-
grade EMS solution when paired with Enapter Gateway
software. Recommended configurations include Intel®
NUC 10th generation Core™ i3-10110U @ 2.1 GHz or
i5-10210U @ 1.6 — 4.2 GHz with dual-channel DDR4
RAM (commonly 8 GB, up to 64 GB). This platform sup-
ports real-time device communication, monitoring, and
control via protocols such as MQTT, OPC UA, Siemens
S7, Modbus, and REST APIs [10].

Other open-source EMS stacks and their hardware ecosys-
tems. Beyond OpenEMS, other common open hardware/-
software stacks are:

i. OpenRemote provides an open-source IoT/EMS stack ori-
ented to buildings and microgrids, integrating heteroge-
neous assets, forecasts, and optimization; it typically tar-
gets x86/ARM/RISC-V Linux SBCs [15, 16].

ii. OpenEnergyMonitor (OEM) combines open hardware
(emonTx/emonPi) and software for home energy moni-
toring, often leveraging Raspberry Pi and Arduino-class
nodes; while more monitoring-focused, OEM illustrates
a mature open HW/SW ecosystem widely used in resi-
dential contexts [18, 22].

Energy-related open-source software in general is listed at [11].

Takeaways. EMS hardware spans both low-cost SBCs
(Raspberry Pi/Banana Pi) for prototyping or small sites and
industrial SBCs/SoMs (e.g., NXP i.MX8 family) for produc-
tion gateways with long-term support. The processors used
are usually ARM application-class chips.

3. GET A RICH LINUX RISC-V ENVIRONMENT QUICKLY

On a host laptop running Debian Linux, we installed the pack-
ages gemu—-system-misc, u-boot, and opensbi to have
the QEMU emulator [23] running as initial development envi-
ronment. For the target running on QEMU, we used the De-
bian image builder from [3] to obtain a QEMU Debian image,
using the Debian testing version, because, as of now, Open-
JDK RISC-V ports are not yet available in Debian stable.

OpenJDK RISC-V ports are available since version 22, to en-
sure stability, we installed the version OpenJDK 23 (openjdk-
23-jre-headless). In the QEMU configuration, we explicitly
specified 48-bit addresses (“~cpu rv64,sv57=0ff”), to
ensure 48-bit address handling, as OpenJDK-23 did not yet
support 57-bit addresses.

4. OPENEMS ENERGY MANAGEMENT APPLICATION

We use a configuration for the OpenEMS open-source energy
management system (OpenEMS [19]), built on top of the Java
OSGi framework [20]. We targeted a simulated home energy
management system setup, provided by OpenEMS as an intro-
ductory example, consisting of a photovoltaic producer, elec-
tricity consumers and a battery, where the energy management
system decides on whether to feed the photovoltaic yield to the
electricity grid or to charge a battery instead.

We took OpenEMS from GitHub and found out that it mostly
runs on RISC-V except for the use of an OSGi package, which
utilizes a platform-dependent JNA (Java Native Applications),
which we were able to disable. We used the tutorial to create
a run-time image on the host and deployed it on the target.

5. RUNNING ON RISC-V CVA6 (GENESYS2 FPGA)

We generated a bitstream and memory configuration file, then
loaded the software to the SD card with the Debian environ-
ment built in Sections 3 and 4 and changeroot into it. For a
full tutorial on how to reproduce these steps, see [6].

An overview of the output shown in Figure 1, this a short-
ened version of the screen output captured in screenlog. 0,
with omissions marked by “[...]”: the first five lines are
from the FPGA, then follows OpenSBI output, e.g., naming
the platform as “ARIANE RISC-V” which refers to CVAG,
Linux “Starting kernel ..”, then we see our chroot and
starting the demo. The output starting with “org.ops43j”
is from the OSGi framework, in the lines with the timestamp
“1970-01-01T03:03:11, 678” we see output from the
OpenEMS demonstration setup, that is, a home energy man-
agement system with a simulated electricity consumption (in
this initial line) of 919 W, of which 688 W are provided from
the grid, and are 231 W provided from a battery with 50% load
state. The next two lines shown simulate fluctuations in con-
sumption and battery control (e.g., the battery taking a higher
part in providing the electrical energy), of course after the sys-
tem has started, many more lines follow in the control loop.

init SPI

status: 0x0000000000000025
status: 0x0000000000000025
SPI initialized!

fooo
OpenSBI v0.9

foool

Platform Name : ARIANE RISC-V

Platform Features : medeleg

Platform HART Count : 1

Platform IPI Device : aclint-mswi

Platform Timer Device : aclint-mtimer @ 1000000Hz

Platform Console Device : uart8250

[oooll

Starting kernel ...

[ 0.000000] Linux version 5.10.7 (hbl@hbl-lap-14) (riscv64-
buildroot-linux-gnu-gcc.br_real (Buildroot 2021.08) 10.3 .0, GNU
Id (GNU Binutils) 2.36.1) #3 SNP Tue Jan 16 12:15:14 CET 2024
[...]

# chroot /mnt

# java -jar demo.jar

foooll

org.ops4j.pax.logging.pax-logging-api
[org.ops4j.pax.logging.internal.Activator] INFO :
Util Logging API support.

Enabling Java

[...]

1970-01-01T03:03:11,678 [_cycle ] INFO
[ebuglog.ControllerDebuglogImpl] [ctrlDebuglLog@] _sum[State:Fault
Ess SoC:50 %|L:231 W Grid:688 W Consumption:919 W] essO[SoC:50
%|L:231 WiAllowed:-10000;10000 W]

Figure 1. OpenEMS boot on RISC-V CVA6 running on
Genesys2 FPGA (console output from board, OpenSBI, Linux
and OpenEMS)

6. EXPERIMENTAL SETUP WITH OPENEMS

To complement the evaluation of OpenEMS on RISC-V hard-
ware, we conducted an additional study examining how the
framework processes real, device-level measurements from a
residential photovoltaic installation. While earlier assessments
relied on synthetic traces generated within the OpenEMS sim-
ulator, this experiment used timestamped CSV logs from a
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commercial household PV system investigated in the ISOLDE
project, containing realistic grid-exchange and photovoltaic
production values recorded during typical summer operation.
Following the standard OpenEMS runtime and configuration
workflow, these datasets were registered as CSV-based data
sources and mapped to simulated PV inverter and grid-meter
components with only minor scaling adjustments, enabling
OpenEMS to infer household consumption directly from in-
verter telemetry. The runtime operated with stable one-second
cycles, and the OpenEMS UI rendered synchronized energy
flows with sub-second latency dominated by browser and net-
work overhead. Together with the RISC-V deployment re-
sults, this demonstrates that open instruction set platforms are
ready to run complex workloads like OpenEMS on open,
vendor-independent hardware, forming a sustainable, device-
agnostic alternative to established platforms for decentralized
residential energy management.

7. PUTTING A HYPERVISOR BENEATH

Having already validated the integration of the applications
with Linux, in this step, we add a hypervisor beneath, in order
to show running embedded Linux with application load in a
secure environment. We use SYSGO’s CODEO GUI [27],
which allows for graphical configuration of embedded sys-
tems, including board parameters, a hypervisor, and option-
ally embedded Linux guests, where we build an integration
project with the PikeOS hypervisor. As part of this integra-
tion project, we also equipped it with an ELinOS embedded
Linux. For simplicity, akin to a the chroot approach we took
on CVAG before, we manually replaced the embedded Linux
root file system (root £s) by a squashfs image generated
from the aforementioned Debian Linux RISC-V environment,
augmented by an init process and support for mounting an
overlay file system to run OpenEMS on openjdk.

As the Java virtual machine on-the-fly generates machine in-
structions from bytecode, one feedback that we got from this
exercise was the necessity to enable instruction cache opera-
tions.

8. STREAMPIPES

Another popular tool commonly used for analyzing industrial
IoT data, such as energy data, is Apache StreamPipes [1], an
Apache Software Foundation top-level project. StreamPipes
focuses on an end-to-end toolbox helping non-technical users
to analyze continuous data streams from machines, sensors,
and other devices (Figures 2). The toolbox comprises both
user-oriented (e.g., user interfaces for data connectivity and
pipeline-based algorithm orchestration) and developer-orien-
ted tools (e.g., Python client libraries or an SDK for protocol
extensions). With a distributed architecture consisting of var-
ious microservices, StreamPipes is a suitable tool for manag-
ing IoT data on a larger scale. In many scenarios, so-called
Extension Services can be deployed at edge nodes (e.g., in-
dustrial PCs). These services are responsible for data collec-
tion and preprocessing from devices like PLCs or energy man-
agement controllers. Extension services publish data to the
StreamPipes core using messaging systems such as MQTT [5].

Users can remotely deploy connectors to edge devices by us-
ing the adapter library available in the StreamPipes user in-

terface. Based on registered rags, the system identifies suit-
able edge nodes and remotely starts an adapter by sending an
invocation message. In this scenario, we experimented with
a distributed setup where a single extension service is run-
ning on a RISC-V-based Banana Pi F3 device. The device
is connected to an energy management controller (in our case,
a Consolinno Leaflet) which is running an OPC-UA server. To
achieve this, we optimised the extension service in a number
of ways. Firstly, in order to reduce the memory footprint, we
created a lightweight service that only supports one messag-
ing protocol (NATS) and a subset of the available StreamPipes
protocol implementations. This also helps to reduce startup
time. Secondly, having experimented with building a RISC-
V-compatible container image, we encountered a startup prob-
lem related to denied syscalls (RISCV_FLUSH_ICACHE). In-
stead of a container-based deployment approach, we ran a
plain Java build using the Eclipse Temurin JDK for RISC-V.

From our experiments, we conclude that porting the Stream-
Pipes extension service was rather straightforward and mainly
required modifications in terms of improving resource effi-
ciency on the application level. A minor drawback is the start-
up time, which takes roughly 30 seconds on the tested Banana
Pi device - however, this does not affect real-world applicabil-
ity since in most cases the service is started once and then
continuously fetches data from downstream devices, which
has proven to be of adequate performance. In general, we be-
lieve that once the average hardware costs of RISC-V-based,
resource-efficient edge devices are more closely aligned with
other architectures, running StreamPipes extension services
on RISC-V are a good way to establish large-scale, distributed
deployments in edge-cloud [oT scenarios where a central layer
is inappropriate (e.g., due to firewall restrictions).

To further evaluate the suitability of RISC-V for IoT scenar-
ios, we used the Rocket Chip Generator [2] to design a tailored
RISC-V-based SoC with an integrated ethernet controller. This
design was deployed on a Xilinx KR260 board in order to cre-
ate a lightway gateway to augment the energy data with addi-
tional sensor measurements. To ensure the efficient operation
of the resource-constrained platform, we built the software
stack on Zephyr RTOS [29], leveraging its built-in MQTT
client library as foundation for a custom MQTT relay server.
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Figure 2. Apache StreamPipes Pipeline Editor
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Thus, this setup allowed data to be collected from external
networked sensors acting as local MQTT clients, as well as
from environmental sensors that were connected directly to
the board. All sensor data was aggregated and forwarded to
the StreamPipes server via MQTT for further analysis. The
system performed well in practice, demonstrating the adapt-
ability of RISC-V even for small, resource-limited IoT plat-
forms.

9. DISCUSSION AND ONGOING/FURTHER WORK

We have described running modern Java applications on RISC-
V, thus validating RISC-V ecosystem maturity, such as (1) por-
tability of OpenEMS, (2) ability to run complex OSGi Java ap-
plications, (3) maturity of the open hardware CVA6 platform
and QEMU, (4) maturity of system software stacks with the
Debian and ELinOS Linux distributions and the PikeOS hy-
pervisor to support this setup, (5) running an Apache
StreamPipes extension service. Running on FPGA of course
is much slower than on real hardware, but it shows that all
functionality is available. We have shown our incremental ap-
proach, the intent is experience-sharing, in the spirit of other
RISC-V learning resources [25].

Specifically on the OpenEMS integration side, we had star-
ted with a stack of CVA6 on FPGA, Debian and OpenEMS
(Section 5), then we have run a stack of RISC-V PolarFire
PikeOS, ELinOS kernel, Debian file system, OpenJDK and
OpenEMS (Section 7). Next, we have ported PikeOS to the
dual-core CVAG6 platform (Culsans [9]) and we are working
on replicating the ELinOS/Debian/OpenJDK/OpenEMS setup
here. Also, we intend to test certain optional CVA6 exten-
sions, such as caches, with our payloads and possibly use our
experience to validate our own developments on a tracing port
(Trace Ingress Port [26]) on the software side.

Although not within our scope, it is conceivable that our se-
tups could be re-used for some sort of more ready-made test
bench. In parallel, a secure and modular pipeline for data ac-
quisition, cryptographic processing, and visualization of en-
ergy management data is implemented for RISC-V based IoT
devices. The data flow starts at the microcontroller, which ac-
quires sensor or grid data and applies AES-256 encryption to
ensure confidentiality during transmission to OpenEMS.
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